Power Struggles: The Intra-Community Implications of EU Energy Policy

Authors: Daniel Scholten, Thomas Sattich, Inga Ydersbond

EU policies to integrate energy markets, promote renewable energy, and diversify supply are aiming at a competitive and sustainable European power sector. The resulting dynamics should largely affect the systems of electricity generation, transportation and storage in Europe: With increasing market integration come new new competitors; coal and gas power plants face new renewable challengers domestically and abroad; and diversification towards new suppliers will bring new trade routes and infrastructure. All in all, EU policies to integrate power markets, promote renewables, and diversify supply will thus profoundly reshuffle national energy assets. The impact of the three EU policies is thus likely to have considerable ‘geopolitical’ implications for individual member states and affect their capability to negotiate, agree on, and/or implement further measures. We conduct a thought experiment which explores potential benefits and losses for individual member states implicit to Europe’s ‘energy transition’, and the political concerns which may be expected to arise as a consequence.

Regarding their impact on the future shape of the European power system, and their relevance for relations between EU member states, the following three EU energy policies stand out: Market integration, the promotion of renewable energy, and supply diversification. Each of these policies has individual implications for the ‘geopolitical’ situation in Europe, and will cause frictions between member states.

Market integration

In an attempt to integrate power markets, the EU developed different policies and legislations to finalise the Internal Electricity Market (by the end of 2014). Capital-intensive and redundant overcapacities would be reduced to a minimum in such a European market, thereby saving large financial means. From a national perspective market integration implies, however, that new competitors to domestic producers emerge, and that electricity companies which are not efficient enough to compete on a European market will get into trouble, while other utilities (including foreign) will be able to strengthen their market position. Moreover, a European power market implies that the interconnection capacity (shortage) along borders will cease to protect domestic markets from foreign competition; a successful EU market integration policy thus increases the likeliness for generation capacity to migrate beyond national borders.

Renewable transition

The promotion and integration of renewables implies three important changes to the European power system:

First, every country or region has access to at least some form and amount of renewable sources of energy; yet some countries are better qualified to become competitive producers than others, because renewable energy sources are denser at certain locations (e.g. the North Sea), and the technological and economical capabilities for their exploitation differ. Production will therefore shift to those countries that have access to better and more sources of renewable energy, offer better incentives for expanding capacity, and can exploit them more cost-efficiently. As a result, countries which decide to exploit their own renewable sources to cover their consumption will (potentially) become (more) self-reliant, with the need for cross-border energy trade (potentially) becoming smaller. Other countries might prefer to import energy, i.e. to buy from EU energy and power markets; as a consequence their strategic focus will shift from the access on overseas fossil fuel resources towards the ownership, management, and protection of grids (and other supply routes for renewables) in order to secure imports.

Second, most renewable generation is of an intermittent nature. Large scale adaptation of the power transmission infrastructure are necessary to harness renewable energy sources such as wind and solar. Increasing the use of this form of power generation in one part of Europe therefore implies also growing balancing costs elsewhere. Moreover, countries that feature cheap balancing services (e.g. dispatchable hydropower or other storage means), standing reserves, interconnector capacity, or renewables that can deliver in times of peak demand, will gain influence over neighbouring countries. Without a regulatory framework that clarifies costs and benefits of renewable electricity generation and transport, conflicts will arise.

Third, renewable electricity implies distributed generation in so called combined power stations. Contrary to today’s big, centralized fossil fuel or nuclear power plants, this form of power generation hence allows for a business model that brings together a larger number of smaller generation units dispersed over larger territories. Where the option of distributed generation is chosen, energy markets become rather locally oriented, and are likely to involve a mix of private and communal companies. Regions/countries with a focus on this business model would hence be less present on the integrated EU market. Decentralised power systems could therefore be an interesting way to protect particular industries from the competitive pressures of European markets.

Supply diversification

Security of energy supply has been on the policy agenda since the oil crises in the 1970s, and especially since the Ukrainian crises in 2005/2006 and 2009. Two dimensions of these EU policies can be identified:

First, external relations between supplier and transit countries outside the EU. Diversification away from Russian and Middle Eastern energy sources towards other regions will lead to altered entry points to the European energy system, for example new LNG capacity; gas grid capacity in those regions will hence have to be increased. Given that the integration of European energy markets proceeds, power generation and transmission capacity might follow these changes. Member states in risk of losing power generation to regions closer to new entry points are thus likely to oppose further steps in such a direction. Another example would be solar PV imports from North Africa which would necessitate new HVDC and interconnector capacity at the Southern European border; member states which are located too far away to benefit from potentially lower electricity tariffs in the Southern regions might feel inclined to oppose the use of European funds to stimulate the construction of the necessary power transmission infrastructure.

Second, stimulating the construction of inter-member state transmission infrastructure is main part of EU’s policy on supply diversification. Common grid planning and Projects of Common Interest for electricity and gas grids are two important instruments in this regard. Yet more interconnection capacity would not only increase the ability to secure and stabilise power supply, but (as in the case of market integration) also contribute to shifts in power generation capacity. Supply diversification through more cross-border interconnection capacity hence implies increased dependency on the will and the capability of (power companies in) neighbouring countries to uphold and stabilize electricity supply. Moreover, the stimulation of interconnectors is currently pursued without a clear legal framework for such an integrated market. Potentially the EU’s internal approach to supply diversification therefore opens the door to continuous fears about the reliability of neighbouring countries. Clear agreements and regulations are therefore necessary to avoid mistrust among member states.

What does it all mean?

While EU policies are aiming at the modernisation of Europe’s power system, member states have enough reasons to worry as to their relative position in the emerging European energy system: Bigger markets, growing transmission capacities, new (renewable) energy carriers, and new supply routes represent greatly altered framework conditions for the future evolution of the power system. And not every country is likely to benefit equally from changes involved with a European power system such as the relocation of power generation capacity and the accompanying infrastructure effects. The internal geopolitical frictions resulting from these EU policies would probably be negligible if the balance between winners and losers were approximately equal in all EU member states, and if the regulatory framework established a level playing field for all market players which promises an overall net gain. But what if a substantial part of Europe’s power generation capacity would – for example – move towards North-Western Europe?

In short, the EU policies discussed above will cause increased economic activity in some countries, whereas others will lose parts of their power industry, and hence produce winners and losers. It seems therefore likely that member states will consider increased participation in the EU power market as a matter of strategic choice: Even though large parts of the electricity generated in Europe might one day be transmitted through a truly European grid system, governments will attempt to keep self-provision for areas of vital state interests and economic reasons, while local communities may desire to become self-sufficient in their power supply. The successful implementation of EU policy to integrate markets, increase renewables, and diversify supply therefore requires at least three different key elements:

– High levels of mutual trust between member states must be reached in order to increase the political acceptance of shifts in power generation and transmission capacities implicit to the EU policies under discussion
– Economic instruments and a regulatory framework are necessary to ease the geopolitical concerns of EU member states
– Co-ownership and/or shared control over grid assets and their operation, either between groups of countries or on the EU level.

See also:

Power Struggles: The Intra-Community Implications of EU Energy Policy